Matrix 정리글
Matrix
matrix 는 두 가지 의미로 해석될 수 있다.
-
linear equations
-
linear mapping
Definition
-
$n, m \in R$
-
matrix A 는 $n \cdot m$ tuple of elements: $a_{ij}, i = 1, 2, \cdots, n, j =1, 2, /cdots, m$
- \begin{equation*} A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \end{equation*}
- column: (1, m)
- row: (1, n)
Matrix Addition and Multiplication
- Addition
- Multiplication(Hadamard product)
- Multiplication(dot product)
- Associativity
- $A(BC) = (AB)C.$
- Distributivity
- $A(B + C) = AB + AC$
- Multiplication with identity matrix
- $IA = AI = A$
- Associativity
Inverse and Transpose
- identity matrix
-
Inverse
- $A, B \in R^{nxn}$
-
Transpose
- $A \in R^{nxm}, B \in R^{mxn}$
- $b_{ij} = a_{ij}$
- $A^T = B$
- $B^T = A$
- Symmetric matrix
- $A^T = A$
- Some properties
- $AA^{-1} = I = A^{-1}A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A+B)^{-1} \neq A^{-1} + B^{-1}$
- $(A^T)^T=A$
- $(A+B)^T = A^T + B^T$
- $(AB)^T = B^TA^T$
- $(A^{-1})^T = (A^T)^{-1}$
Multiplication by scalars
-
Associativity
- $\lambda(\phi C) = (\lambda \phi)C$
-
Distributivity
- $\lambda(B + C) = \lambda B + \lambda C$
Compact Representations of Systems of Linear Equations
- linear equation
- Vector
- Matrix